Terrahedron Vol. 43. No. 17. pp. 3991 to 4006, 1987 **Pnnted in Great Britain.**

A 270 MHz ¹H-NMR STUDY OF THREE "BRANCHED" RIBONUCLEOTIDES A^{2+p5}_{3+p5+6} , A^{2+p5+6}_{3+p5+6} AND A₂₁ **Example: THE IMPORTANCE OF BEING BRANCHED WITH A 2'->5 3'p5'G' 3'p5'G** 3'p5'G: THE IMPORTANCE OF BEING BRANCHED WITH A 2'→5' PHOSPHODIESTER
→ PHOSPHODIESTER **BONO** IN **THE PRE-mRNA PROCESSING REACTIONS (SPLICING).**

J-M. VIAL, 6. REMAUD, N. BALGOBIN AND J. CHATTOPADHYAYA*

Department of Bioorganic Chemistry, Uppsala University, Biomedical Center, Box 581, S-751 23 Uppsala, Sweden

(Receiced in UK 12 **May** 1987)

Abstract: Conformational studies with three analogues 3, 4 and 5 of nat**urally-occurring branched ribonucleotides 1 and 2 have shown that they adopt a secondary structure which is overwhelmingly coiitrolled by a stacking between adenine(2' + S'lnucleobase residues while the 3' + 5' linked guanine residue is apart. This observation along with the fact that all four nucleosides can form lariats in nuclear mRNA splicing, but it is guanosine as the 2' * 5' nucleotide that can drive the splicing reaction to completion. suggests a biological significance of the additional 2' + 5' phosphodiester bond formation in the splicing reaction. It is likely that the final impli**cation of formation of such a 2' **+ 5' linked lariat is that it provides** a pathway to assume a free energy minimum conformation through the $2^+ + 5^+$ **stacking, especially in the case of guanosine. to drive the splicing reaction to completion (stacking-driven-energy-punpl.**

A two-step mechanism1-6 has been proposed for the precursor mRNA splicing in mammalian cells, although precise details of this unique chemical reaction have yet to be resolved. In **the first step of the reaction, cleavage occurs at the 5' splice site to give an obligatory circular 'branched" RNA (lariat) structure with intron attached to exon 2.** In **such lariat structures the 5'-phosphodiester residue from the 5'-end of the intron forms an additional 2'+ 5' phosphodiester** bond with an adenosine residue as the branch point, which is already $3' + 5'$ phosphodiester linked **to a pyrimidine residue as in 1 and 2.** In **the second step, the scission of the covalent bond between the circular intron and the exon 2 takes place, followed by the ligation of exons 1 and 2.** It has been now clearly established in case of nuclear mRNA splicing⁷⁻¹⁰ that (1) the sequence **requirement of branched structure formation, is not stringent, all nucleotides can serve as branch** acceptor with different efficiency (A = C>U/G). Mutation of the branch acceptor A-nucleotide to U and G leads to the use of the A-nucleotide just one nucleotide upstream of the mutated position; **(2) the structure of the branch is essential for the second step of the reaction, i.e., joining of the two exons. Branches at the A-nucleotide (wild type) and the C-nucelotide are permissive whereas** U and G inhibit the second step of the splicing reaction; (3) G-nucleotide as the $2' + 5'$ nucleo**tide is absolutely important for the second step of the splicing reaction, however A. U and C are** permissive just for the formation of branch. Naturally, we asked ourselves what is more important in the splicing reaction: the G residue as the $2' + 5'$ nucleobase or the $2' + 5'$ phosphodiester **linkage or both? We have recently carried out a 270 MHz lH-NMR studies of two branched RNA structures in order to understand their structural make up that may have a special relevance in the**

splicing reaction. We found¹¹ that the conformation of the branched trinucleotides $\underline{1}$ and $\underline{2}$ are very similar and is comprised of a strongly stacked state between $2^1 \div 5^1$ linked adenine and guanine moieties while the $3'$ + 5' linked pyrimidine residue is apart and adopts a coplanar state with the adenine part. In the present work we report our studies with the isomeric branched trinucleotides $\underline{3}$ and $\frac{4}{3}$, in which $3'$ \rightarrow 5' residue is guanine and the $2'$ \rightarrow 5' residue is either a U or a C residue. This work shows, in conjunction with our previous studies, that the stacking between $2^1 + 5^1$ linked nucleobases is independent of nature of nucleobase in branched trinucleotides 1 to 4. This has been furthermore focussed in our present conformational studies with the branched trinucleotide 5 in which both $3' \rightarrow 5'$ and $2' \rightarrow 5'$ phosphodiester linked nucleobases are guanine residues and yet it is the $2'$ + 5' stacking that is overwhelmingly preferred to the $3'$ + 5' stacking.

 $B¹ = A; B² = U; B³ = G$ $\mathbf{1}$ $B^1 = A$; $B^2 = C$; $B^3 = G$ $\mathbf 2$ 3 $B^1 = A$; $B^2 = G$; $B^3 = U$ 4 $B^1 = A$; $B^2 = G$; $B^3 = C$ 5 $B^1 = A$; $B^2 = B^3 = G$

Table 1. ¹H-NMR assignments⁸ of branched trinucleotides 3, 4 and 5.

Compound	Fragment	H8	H ₂	Н6	H5	H1'	H2'	H3'	H4'	H5'	$H5$ ¹	
$\overline{3}$	pAp	8.24	7.96	$\qquad \qquad \blacksquare$	$\overline{}$	6.02	5.06	4.79	4.40		3.66	
	рG	7.98	\blacksquare	-	$\hbox{--}$	5.84	4.79	4.50	4.29		4.15	
	pU	$\qquad \qquad \blacksquare$	-	7.32	5.60	5.54	3.93		3.76		3.47	
$\overline{4}$	pAp	8.23	7.89	$\overline{}$	$\qquad \qquad \blacksquare$	6.03	5.08	4.80	4.40	3.66		
	рG	7.98	$\qquad \qquad \blacksquare$		-	5.84	4.80	4.50	4.30	4.15		
	рC	۰	-	7.29	5.70	5.50	3.86		3,78		3.51	
$\overline{5}$	pAp	8.16	7.78	٠	$\overline{}$	6.07	5.17	4.83	4.29	3.67		
	$3'$ pG	7.95	$\overline{}$	٠	$\overline{}$	5.82	4.74	4.48	4.38	4.16		
	$2'$ _{pG}	7.62	$\hskip1.6pt\hskip1.6pt\hskip1.6pt\hskip1.6pt\hskip1.6pt\hskip1.6pt\hskip1.6pt\hskip1.6pt\hskip1.6pt\hskip1.6pt\hskip1.6pt\hskip1.6pt\hskip1.6pt$	\blacksquare	$\qquad \qquad \blacksquare$	5.55	4.38	4.17	3.91	3.84	3.55	

^ain ppm, CH₃CN as internal reference set at 2.00 ppm. $T = 25$ ^oC.

Assignment of resonance

All IH resonances of branched trinucleotides 2, 4 and 5 are assigned on the basis of incremental analysis by comparing the studies with the parent dimers: adenylyl(3' $\scriptstyle\rm +$ 5')guanine (A3'p5'G)¹², α denylyl(2' + 5')guanine (A2'p5'G)¹¹, adenylyl(2' + 5')uracil (A2'p5'U)¹³ or adenylyl(2' + 5')cytidine (A2'p5'C)¹². Such studies have shown the effect of the 2'-substituents, 5'-pU, 5'-pC or 5'-pG, in trimers 3, 4 and 5, respectively. The study of chemical shifts as a function of tempera**ture (from 7 'C to 80 'Cl have been also used for assignment purposes. Fig. 1 shows the 270 MHz** $^{\text{1}}$ H-NMR spectra of trinucleotides <u>1</u>, <u>2</u> and <u>3</u> in $^{\text{2}}$ H₂O. The assignment of all protons of trinucleo**tides have been corroborated by detailed 20 NHR studies using SECSY and/or COSY pulse sequences; a SECSY spectrum of the trinucleotide 2 is shown as an example (Fig. 21. Complete assignments of all IH resonances of all three trinucleotides, 3. 4 and 5, are shown in Table 1.**

(I1 Resonances of aromatic protons

H6 resonance of the pyrimidine moiety was assigned by its characteristic coupling with H5, appearing as a doublet of ca. 8 Hz for uracil and ca. 7.5 Hz for cytosine. A comparative study of aromatic protons of Mnonucleotides at high temperature with those of aromatic singlets from adenine and guanine residues of branched trinucleotides 3, 2 and 2, have shown that, in trinucleotides, they are shielded in the following order H6G>H2A>H6A as in A3'p5'G and A2'p5'G. For the trinucleotide 5, the resonances of 3'-substituent (3'-pG) are more downfield than the 2'-substituent (2'-pG). **A comparison between A3'p5'G and A2'p5'G also leads to the same conclusion. It has been found, in general, that the resonances from the 2'-substituent are more shielded than those from the 3'-sub**stituent; this observation is true irrespective of the nature of the nucleobase^{11,14}. It is also **known that the aromatic protons of the purines display different intensities (H2A>H6A>HGGl in 2H20 solution due to their different acidities, which was also used for the assignment purposes.**

Ng.2: 270 MHa SBCSY spectrum of compound 3 et 25 'C.The connection of J network is shown by the solid lines.

(Ill Resonances of sugar protons

The H1'A, in trinucleotides 3, 4 and 5, is the most downfield signal of anomeric protons as deter**mined from the connectlvities of H2'A and H3'A uhlch can be conveniently assigned due to their downfield shifts and characteristic 31P-1H couplings. An incremental assignment of the trlnucleo**tides by comparison with the dinucleotides, A3'p5'G, A2'p5'G, A2'p5'U and A2'p5'C, as discussed above, has shown that **Hl'G** is more downfield than **Hl'U** and **Hl'C** in 3 and $\frac{4}{1}$, respectively. Similarly, a comparison of spectra of A3'p5'G and A2'p5'G with that of the trinucleotide 5 has clearly **established that the Hl' of 3' + '5' linked guanoslne residue Is more downfield than the Hl' of** 2' → 5' linked guanosine residue. 2D NMR (SECSY and COSY) experiments were performed for each di**and trlnucleotides for a complete assignment of sugar protons. This Is Illustrated through the SECSY spectrum of trinucleotlde 2 shown In Fig. 2. Fig. 2 shows that the J network of all three pentose sugar moieties are clearly accessible by following the correlation spots from the anomeric part to the highfleld part.**

Finally, 2D 31p/1H NMR shift correlation experiments for trinucleotides 3, 4 and 5 confirmed previous assignments of ³¹P resonances for compounds <u>I</u> and <u>Z</u>. For example, the fig. 3 shows the $31p/1H$ correlation spectrum for compound $\overline{3}$ in which it can be seen that the $2' + 5'$ phosphodiesterphosphate is more shielded and experiences spin couplings with H5'U and H5''U. It should also be **noted both in our present and previous studles 11 that the 5' and 5" protons of the 2'-substituent are well separated while the corresponding protons from the 3'-substituent are superlnposed at 270 MHz irrespective of the nature of the nucleobase.**

Fig.s: 31Pll~ correlation spectrum of compound 3 at 25 OC.The projection is represented for the ³¹P-NMR spectrum.

RESULTS AND DISCUSSION

The ring-current effect of the base, the diamagnetic anisotropy of the electron-rich group like C=O or P=0 bonds and the electric field effects are the major factors that determine the chemical shifts in an oligonucleotide molecule¹⁵. In the stacked form, the aromatic (especially H2A, H5U, H5C) and anomeric protons experience an upfield shift due to the diamagnetic effect (ring current effect) of the neighbouring base. Therefore a study of the chemical shift of the aromatic and anomeric protons as a function of the temperature allows the detection of a stacking between two nucleobases under consideration. On the other hand H8A, H8G, H6U or H6C show a dependence on the glycosidic torsion angle. Temperature dependent chemical shifts of aromatic and anomeric protons from different nucleoside residues of trinucleotides $\underline{3}$, $\underline{4}$ and $\underline{5}$ are shown in Fig. 4 and are summarized in table 2.

Table 2. Temperature-dependent chemical shifts^a of branched trinucleotides $\frac{3}{2}$, $\frac{4}{2}$ and $\frac{5}{2}$.

^aCH3CN as internal reference set at 2.000 ppm.

A comparison between temperature dependent chemical shifts in 3, 4 or 5 with those of A3'p5'G, **A2'p5'U, A2'p5'C or A2'p5'G clearly shows that the behavfour of the branched trfnucleotfdes is very** similar to these of $(2^1 + 5^1)$ phosphodiester linked dimers. Therefore a stacking between the **adenfne moiety and the base of the 2'-substftuent seems to dictate the predominant conformatlonal state of the branched trfnucleotfdes. The H2A experiences an upffeld shift upon a decrease of tem**perature from 80 $^{\circ}$ to 7 $^{\circ}$ C of ca. 0.16 ppm in 3, ca. 0.19 ppm in 4 and ca. 0.25 ppm in 5, showing a **varied degree of ring current effect from different 2'** \div **5' linked nucleobase (G> C >U). On the other hand, Hl'G (3'-substftuent) in 2 and 4 goes downfield upon a temperature change from 80 ' to 7 'C which is not found in A3'p5'G where** Hl'G goes **upfleld by ca. 0.08 ppm. This discrepancy can be** rationalized by an absence of a stacking between A and G in A3'p5'G part of 3, 4 and 5. However, **the temperature profile (Fig. 41 of H8G (3'-substftuent) suggests that a certain amount of stacked** form exists (upfield shift of H8G from ca. 35 °C to 7 °C) at low temperature.

An approximate population of pseudorotamers 16 of the sugar residue at various temperature have been estimated from the J_{1',2}, coupling constants using the procedure described by Altona and his coworkers¹⁷. The percentage of N pseudorotamers at a temperature under consideration has been cal**culated by the following equation.**

$$
J_{1^{\prime},2^{\prime}}^{Exp} = X_{N}J_{1^{\prime},2^{\prime}}^{N} + (1-X_{N})J_{1^{\prime},2^{\prime}}^{S}
$$

where X,, is the mole fraction of the N-type conformers, J:,,2,, J:, 28 **and** J:fp2, **represent the couplings between** Hl' **and H2' for a pure N-type, S-type and for the'compound udder consfderatfon,** respectively. We have used general conditions⁴⁹ for pseudorotational analysis of riboses of **3'-guanosine residue** $(J_{1}^{n}, J_{2}) = 1$ **Hz and** $J_{2}^{n}, J_{3} = 7.8$ **Hz). In compounds 3, 4 and 5,** $J_{1}^{n}, J_{2} = 1.1$ **Hz and** J:, 21 1 Hz **and** Js, 2, = **8.1 Hz have 6een used for the i(2'** = **7.8 Hz). In compounds 3, 4 and 5,** J", \rightarrow 5')X part since Doornboss et al.¹³ have found these values in 2[']+ 5' linked dinucleotides. The results in the table 3 show that in 3 and 4 the **adenosfne residue is pure S-type and the pyrfmfdfne residue is pure N-type while 3'pG moiety has a conformation of ca. 40% N. These features are closely comparable to those found in the dfmer A2'p5'U13 and A2'p5'C12. Similarly, the adopted conformation of the different sugar moieties in** compound 5 is almost identical to those found in A2'p5'G¹¹. This conformational analysis clearly confirms that the secondary structure of the branched trinucleotides 3, 4 and 5 closely mimic stacked states which are present in the corresponding $(2' + 5')$ dimers and the $3'pG$ is free apart. **Thfs Is also corroborated by the fact that the conformational states of the sugar moieties fn com**pounds $3, 4$ and 5 are also almost similar to the corresponding adenine $(2' + 5')$ pyrimidine/ **guanfne. It therefore emerges from this study that the secondary structures of these three branched**

Compound	T°C	D. '(pAp) J_{1} in the \sim	ZН	$D(2)pX)^C$	%N	P(3' pG)	XN
		7.6		2.2	84	5.1	40
	21	7.5	8	2.3	83	5.1	40
	80	6.9	17	3.8	61	5.5	34
		7.8	4	0.7	100	5.0	41
	21	7.6		0.9	100	5.6	32
	80	7.1	14	2.4	81	5.7	31
5		6.8	18	4.9	45	5.7	31
	21	6.5	23	5	44	5.6	32
	80	6.3	26	5.3	40	5.9	28

Table 3. Distribution of pseudorotamers^a of three constituent sugar residues in branched **trfnucleotfdes 3, 4 and 5.**

a
asee discussion part, ^bin Hz, estimated accuracy f0.3 Hz, ^CX = U for 3, X = C for 4, $X = G$ for 5 .

trinucleotides 2, \$ and 2 closely resemble to those we found 11 for the naturally occurring branched trinucleotides, A_{21}^* , A_{31}^* and A_{31}^* , B_{41}^* . Recent theoretical studies of the conformation of $(2^1 \div 5^1)$ polynucleotides" have shown a striking correlation between the glycosyl rotation and C2'-O2' tor**slon which are not present in (3' + 5') polynucleotldes. A comparison of structural features** between $(2' + 5')$ and $(3' + 5')$ polynucleotides also shows that $C2'$ -02' torsion and the attached **E'phosphate, In the former, are distantly nearer to the heterocycllc base which limit the** rotational freedom of the $(2^1 + 5^1)$ chain quite significantly compared to the $(3^1 + 5^1)$ chain. **These observations are in complete agreement with our studies showing that the effect of the** $(3' \rightarrow 5')$ nucleotide substituent on the $(2' \rightarrow 5')$ stacked state in the branched trinucleotides 1 to 5 is almost negligible. We anticipate that the exact $2' + 5'$ stacking energies in these branched trinucleotides 1 to 5 will depend upon the constituent $2' + 5'$ nucleobase.

Since our present study, In conjunction with our earlier observations ¹¹ , clearly show that the stacking between 2' + 5' linked nucleobases are overwhelmingly more preferred to the competing $3'$ $+$ 5' linked bases in the branched trinucleotides, 1 to 5, it is, therefore, conceivable that the **overall conformation of trinucleotide arise due to the free energy minimum state** of the preferred $2' + 5'$ stacking. Recent studies on sequence requirements in nuclear mRNA splicing has shown, by detailed mutation experiments <u>in vivo</u>⁷⁻¹⁰, that the formation of lariat is possibl with all four nucleobases, but guanine as the $2' + 5'$ nucleotide is aboslutely necessary for the **second step of splicing reaction (i.e.. the sclssion of the 3'-exon and ligation of 5'- and 3'-exons). These studies furthermore indicate that the steric and precise energy requirements for** the formation of $2' + 5'$ branched intron (lariat) may be quite independent of the scission of the **3'-exon and its subsequent ligation to the 5'-exon. It 1s conceivable that an intramolecular conformational transition of the 2' + 5' branched intron. with the 3'-exon attached, from a higher** energy state $(3' \rightarrow 5'$ stacking) to a lower energy state $(2' \rightarrow 5'$ stacking) is necessary to drive **the splicing reaction to completion (conformation-driven-energy-pumpll). Since all four nucleosides** can form lariats in mutation experiments i<u>n vivo⁷⁻¹⁰,</u> it is, therefore, probable that the formation **of the 2'+ 5' linked branched pre-mRNA with anyone of the four nucleosldes, in general. constitute** a pathway to adopt a free energy minimum state. It is guanine, however, as the $2'$ \rightarrow 5' branching **nucleotide perhaps gives an ideal free-energy minimum 2' + 5' stacked state which generates sufficient free energy of activation for the cleavage of the 3'-exon in the second step of splicing.**

Work is now in progress to deduce the exact thermodynamic parameters of different stacking energies of dlnucleotldes and branched trl- and tetranucleotides by 500 MHz IH-NMR spectroscopy.

EXPERIMENTAL

NMR samples

strategy for the preparation of branched RNA Land 2 have been reported20. A has been used for branched trinucleotides **using a procedure developed by Ogilvie and his coworkers 3 and 4. roonpound 5 has been prepared Na+ exchange resin and lyophlllzed two times from 99.8% 2H;0 and** The samples were treated with Dowex **. Finally the samples (ca. 5 mgl were dissolved In 0.6 ml of 99.9% 8 hen co-evaporated in 99.9% H20. H20. The pH was found to be 6.5. A trace of dry acetonltrile was added to the samples as an internal reference (set at 2 ppm).**

NMR spectroscopy

Spectra were obtained on a Jeol GX 270 spectrometer. 1D spectra were recorded on 16 K datapolnts and FIDs were zero-fllled to 32 K datapoints before Fourier transformation with a spectral range of 2000 Hz, the digital resolution was 0.12 Hz.

The SECSY spectrum was recorded by the basic pulse sequence²¹. 256 FIDs consisting of 1 K data**points were recorded, a sine bell wlndow was applied In both directions. Before Fourier transformtrix was zero-filled to 512 points In the FI dlrection.**

The ³¹p/¹H shift correlation was recording using the method described by A. Otter and
Coworkers²². The spectral range was 250 Hz for ³¹P direction (F₂) and 2000 Hz for ¹H direction
(F₁). The delay 1/2J and 1/

ACKNOWLEDGEMENTS

Authors thank Swedish Board for Technical Development (STU) and Swedish Natural Science Research **Council (NFR) for generous financial support, Wallenbergstiftelsen for the funds for the purchase of 270 MHz NMR and Ingegiird Schiller for secretarial assistance.**

REFERENCES

- **1. N. Hernandez and W. Keller, Cell, 35, 89 (1983).**
- **2.** P.J*.* Grabowski, R*.*A. Padgett and P.A. Sharp, <u>Cell</u>, 37, 415 (1984).
- **M.M. Konarska. P.J. Grabowski, R.A. Padgett am.A. Sharp, Nature, 313, 552 (1985).**
- **3:** A. Krämer, W. Keller, B. Appel and R. Lührmann, C<u>ell</u>, 299 (1984). ⁻
- B. Ruskin, a.R. Krainer, T. Maniatis and M.R. Green, <u>Cell, 38</u>, 317 (1984)*.*
- **65: B. ruskin and MR. Green, Science, 229, 135 (1985).**
- **7.** M. Aebi, H. Hornig, R.A. Padgett, J. Reiser and C. Weissmann, C<u>ell, 47</u>, 555 (1986).
- **8. 9. H. Hornig. M. Aebi and C. Weissmann, Nature, 324, 589 (1986). G.A. Freyer. J. Arenas, K.K. Perkins,murneaux, L. Pick, B. Young, R.J. Roberts and J. Hurwitt. J. Biol. Chem., 262, 4267 (1987).**
- **10.** M. **Aebi,** i3 **Hornig andC.~issmann, Cell, (in press).**
- **11. 12.** G. Remaud, J-M. Vial, A. Nyilas, N. Balgobin and J. Chattopadhyaya, <u>Tetrahedron,</u> 43, 94/ (1987).
P.O.P. Ts'O, N.S. Kondo, M.P. Schweizer and D.P. Hollis, <u>Biochemistry, 8,</u> 997 (1969).
- **13. J. Doornbos, J.A.J. Den Hartog, J.H. van Boom and C. Altona, <u>Eur. J. Biochem</u>., <u>116</u>, 403 (1981)**
- **14. M.J. Damha, R.T. Pon and K.K. Ogilvie, Tetrahedron Lett., 26,-l A. Pullman and B. Pullman, Quarterly Reviews of Blophysics~4, 289 (1981;.**
- **15. 16.** C. **Altona and M. Sandaralingam, J. Am. Chem. Soc., 94,** 8205 (1972) and <u>ibid</u>, <u>95</u>, 2333 (1973).
- **17.** C.A.G. Haasnoot, F.A.A.M. de Leeuw and C. Altona, Tet<u>rahedron</u>,
- **18.** C.A.G. Haasnoot, F.A.A.M. de Leeuw and C. Altona, <u>letranedron, 36,</u> 2783 (198
F.A.A. de Leeuw and C. Altona, J. Chem. Soc. Perkin II, 375 (1982).
- **19.** A.R. Srinirasan and W.K. Olson, Nucleic Acid Res., 14, 5461 (1986).
- **20.** J-M. Yial, N. Balgobin, G. Remaud, A. Nyilas and J. Chattopadhyaya, <u>Nucleosides and Nucleotides</u>
6 (1,2), 209 (1987).
- 21**.** G.A. Morris, Magn. Reson. Chem., 24, 371 (1986).
- **22. A. Otter, J.W. Lawn and G. Kotovych, Magn. Reson. Chem., 24, 251 (1986).**